logo

Loading...

People are sometimes surprised that there are psychologists who are not mental health providers. It’s also true for people with persistent pain who might wonder why their physician referred them to a psychologist for the management of their pain. ‘I’m not depressed’, they might think. The implication is that you’d only see a psychologist if you have a mental health condition, such as depression, anxiety or insomnia. It can therefore be puzzling when referring providers continue to insist on the recommendation of seeing a psychologist for pain, even when yo don’t have mental health problems.

A little known, yet similarly surprising fact about pain management is that some of the historical founders of modern pain management were psychologists. Ron Melzack, a psychologist, along with Patrick Wall, a physician, developed the first modern theory of how pain is produced in the body, highlighting the central role of the nervous system. Five decades of subsequent research coming from their theory now informs our current day understanding of pain and how to treat it. Bill Fordyce, a psychologist, along with John Bonica, a physician, are largely credited with creating the first team-based, interdisciplinary pain clinic, which continues to this day to be the gold standard for pain management.

Psychologists have thus been integral to pain management since its inception as a field within healthcare, and yet their role in pain management remains puzzling to most people with persistent pain, and even to most in society itself.

What is a Pain Psychologist?

Pain psychologists are psychologists who assess and treat pain of all kinds, including post-surgical pain, cancer pain, and chronic pain. Pain psychologists are doctoral-level healthcare providers who have had training and experience typically in health psychology and then went on to specialize in pain management. To best understand how pain psychologists help to reduce pain, let’s first discuss what a health psychologist is, and then apply this understanding to pain psychology.

Health psychology is a type of psychology that centers on the assessment and treatment of health conditions, such as pain, diabetes, Photo by Markus Winkler courtesy of Unsplash 15heart disease, obesity, among others. One common factor that underlies all these conditions is that their effective management requires more than simply relying on medical treatments alone. To best manage them, these conditions also require patients to make healthy lifestyle changes. So, for example, people with type 2 diabetes may rely on certain medications to manage their condition, but to best manage their diabetes they also need to know something about nutrition and make healthy food choices, achieve a healthy weight, get regular exercise, and manage their stress well. All of these latter changes are what we tend to call lifestyle change or health behavior change. When done over time, health behavior changes can positively affect the biological basis of these conditions and reduce the impact that these conditions have on the patient. 

Here is where the role of the health psychologists, including the subtype of pain psychologists, come into play on the healthcare team. Predominantly, physicians have expertise in medications and procedures that can positively affect conditions such as pain, diabetes, heart disease or obesity, but tend to have less expertise in coaching and motivating patients to engage in health behavior changes that also must be pursued if these conditions are to be successfully managed. In contrast, health psychologists are doctoral level healthcare providers whose expertise lies solely in helping patients to take ownership of their health, educating them on how to best manage their health condition, motivate them to start and maintain health behavior changes, and supportively coach them along the way.

Now, pain psychologists are health psychologists who have a further specialization in the management of pain. They assess pain and its many contributing causes. They also assess how the patient is responding to pain, or, in other words, the degree to which the patient is responding to the pain effectively or not. From this assessment, pain psychologist determine a treatment plan to engage the patient in making health behavior changes, which, when done over time, positively affect the physiological basis of pain and thereby reduces pain. They also show patients how to respond more effectively to pain and in so doing patients also reduce the negative impact that pain has on their life.

The therapies that pain psychologists pursue are empirically-supported. Empirically-supported therapies are therapies that scientific research shows are effective. Pain psychology therapies have been shown to reduce pain, increase quality of life, and reduce the use of opioid medications.

How do pain psychology therapies work?

Pain psychologists have a sophisticated, scientifically-informed understanding of the nature of pain. To understand how pain psychology therapies are effective, it is necessary to understand how pain is produced in the body.

Many people naturally assume that pain requires an injury or an illness to occur. This assumption is apt to come from the many times we injured ourselves or became ill and had pain. We step on a nail, for instance, and the puncture wound usually hurts. We thus come to associate pain with injury or illness. So, whenever we have pain we look for some type of bodily injury or illness that causes the pain. To treat the pain, we subsequently try to treat the injury or illness associated with the pain.

From this way of understanding pain, it’s hard to see why you’d ever want to see a pain psychologist. What role, if any, could a psychologist ever play in treating a bodily injury or illness?

This understanding isn’t necessarily wrong, but it is incomplete. We know from five decades of scientific and clinical research (beginning with Melzack, the psychologist, and Wall, the physician, mentioned above!) that the occurrence of pain also requires a nervous system. 

The nervous system consists of nerves in the body, sometimes called peripheral nerves, and the spinal cord and brain. The peripheral nerves are connected to the spinal cord and brain. Many of the peripheral nerves in the body are sensory nerves, which means that they sense things. You can feel a smooth table top because you have sensory nerves in your finger tips, which are connected to nerves in your arm, spinal cord and brain. When you touch the table top, the sensory nerves send an electro-chemical signal up the nerves to your spinal cord and brain. Your brain processes this electro-chemical signal and produces a sensation of smoothness in your finger tips. 

The same would be true if you injure yourself by, say, hitting your thumb with a hammer. Your sensory nerves in your thumb send electro-chemical signals to your brain via your spinal cord. Your brain processes this information as threatening and produces a sensory alarm that you feel as pain in your thumb that you hit with the hammer. 

We might therefore use an analogy of a building’s fire alarm system when understanding how pain works in the body. Just as there are smoke detectors located throughout a building, we have sensory nerves throughout the body. In the case of a fire alarm system in a building, smoke detectors persistently send signals to a computer on the state of the rooms in which they are located and when the computer recognizes the signal that corresponds to smoke, it sounds an auditory alarm. Similarly, sensory nerves are persistently sending signals to the brain on the state of the body — its position, what is being touched, the temperature, etc. When the brain recognizes a signal as threatening, such as when the body is injured or ill, the brain produces a sensory alarm, which we call pain. We don’t hear pain, like we hear a fire alarm, but pain functions in the same way. In other words, we don’t have an auditory alarm, but rather a tactile alarm. Despite this difference, the alarms function similarly in that they tell us that there is something wrong in the building/body. Just as an auditory alarm is produced by a fire alarm system in response to fire, our sensory alarm, or pain, is produced by the nervous system in response to something going wrong in the body.

Now, there are two things when an alarm goes off. In the case of the fire alarm, there is the fire and there is the auditory alarm produced by the fire alarm system. Similarly, with pain, or at least as we commonly think of pain, there is an injury or illness, and there is the sensory alarm, called pain, that is produced by the nervous system.

Now here’s the important part. Fire alarm systems are set at a certain level of sensitivity. We want it to sound the alarm when there is a fire, but not when we light a candle. We could imagine a fire alarm system that is set at a sensitivity that only goes off when there is a raging fire, but not a small fire. It wouldn’t be very useful. We want it set at just the right level. It shouldn’t go off in response to a candle, but it should go off with any fire bigger than a candle. The reverse settings would be equally problematic. Imagine a fire alarm system that sounds the alarm in response to a candle, or someone smoking a cigarette. Imagine further if the fire alarm system in your building was so sensitive that it went off if someone was smoking just outside the front door or on the front sidewalk. Imagine your building’s fire alarm was set at such a sensitive level that it went off with barometric changes that occur when a weather-related cold front comes through. 

In such cases, we’d want to ensure that there is no fire, of course, but we’d also want someone to reset the fire alarm system to a normal level of sensitivity, so it would only go off when there is fire.

Here is where the role of the pain psychologist comes into play. Psychologists in general are experts in helping people change their nervous systems. Usually, as we mentioned in the beginning of this essay, we think of psychologists helping people change their nervous systems to reduce things like anxiety, depression, insomnia, trauma, and addictions. But pain psychologists, with their expert understanding of how pain is produced by the nervous system, can help people with pain change how their nervous systems are producing pain — regardless of the initial cause of the pain. 

While it might be a bit overly simplistic, we might say of the two variables involved in the production of pain — injury/illness and a nervous system — that physicians tend to target the former to reduce pain while pain psychologists target the latter to reduce pain.

There are pain psychology therapies that reduce pain by reducing the reactivity of the nervous system that produces pain, whether it is the pain that follows surgery, the pain of childbirth, the pain of cancer, or chronic pain. By reducing the sensitivity of the nervous system, you reduce pain.

What does a pain psychologist do?

All pain psychology therapies target the nervous system and reduce its sensitivity to producing pain. Some therapies target how the brain processes the signals that are sent to it by the peripheral nerves in the body. These therapies help patients take a different perspective and change how they experience pain. Some other therapies target the peripheral nerves in the body and reduce their reactivity. These therapies help patients to learn how to calm the body’s peripheral nerves to change the set point of their nervous system. By doing so, their nervous systems do not react so easily and as a result their nervous system doesn’t produce pain so readily.

The former type of therapies are more cognitive in nature, meaning that they focus on changing how the brain processes the information that is sent to it by the peripheral sensory nerves. They involve helping patients learn about their pain, understand it better, and take the sense of fear or alarm out of pain. Patients come to learn that pain is unpleasant, but that it can be increasingly tolerated. Indeed, these therapies can show people how to increasingly stay grounded in the presence of the sensation of pain, and thereby learn to distract themselves from pain in the knowledge that the sensation itself is not harmful. By repetitively practicing this skill set, patients change how their brain processes the information that is sent to it by the peripheral sensory nerves.

The latter type of therapies are more behavioral in nature, which involve reseting the sensitivity of the overall nervous system, including the peripheral nerves. Reseting the nervous system is sometimes referred to as down-regulating the nervous system. As human beings, we don’t typically have voluntary control over our nervous systems. We typically can’t, for instance, simply calm down and relax despite the common admonishment from a loved one to do so when we are upset. However, pain psychologists can coach you on ways to target your nervous system and repetitively calm it down. When done over time, it tends to reset the set point for when it produces pain. So, for example, pain psychologists can coach patient in diaphragmatic breathing practices and forms of meditation that when practiced repetitively over time down-regulates the nervous system and thereby reduces average levels of pain. Pain psychologists might also recommend engaging in a mild aerobic exercise, such as walking or walking in a warm water pool or riding a stationary bike. When done on a repetitive basis, mild aerobic exercise can also down-regulate the nervous system and thereby reduce pain. There are a number of such health behavior changes that pain psychologists can coach their patients to do in a supportive manner.

Photo by Danielle Macinnes courtesy of UnsplashIn general, the overall goal of pain psychology therapies is to reduce pain and reduce the negative impact that pain has on patients. These therapies focus on what the patient can do to achieve these goals, rather than on what the healthcare system can do to achieve these goals. In this way, pain psychology therapies involve a focus on self-management. Self-management is a catchall phrase that captures the healthy lifestyle changes that patients pursue to positively affect their health.

Some of the most important things that we can do to achieve health involves things that we do, not what our healthcare providers do. In the case of pain management, some of the most effective things that can be done to manage pain are things that the patient does by targeting the nervous system. This emphasis on self-management further helps patients with chronic pain become as independent of the healthcare system as possible, such acquiring the abilities to self-manage pain successfully without the use of opioid medications

Assessments and therapies that pain psychologists perform

Pain psychologists perform a variety of assessments and therapies. The following is a brief list of the most common types of assessments and therapies.

  • Assessments
    • Pre-surgical psychological evaluations for spine surgery, spinal cord stimulator implants, and intrathecal drug delivery devices (aka ‘pain pumps’)
    • Evaluations for participation in a chronic pain rehabilitation program (sometimes referred to as functional restoration programs)
    • Psychological evaluations related to the use of opioid medications
  • Therapies
    • Cognitive-behavioral therapy
    • Acceptance and commitment therapy
    • Mindfulness training
    • Meditation and relaxation therapies
    • Chronic pain rehabilitation programs (sometimes referred to as functional restoration programs)

Research over many decades has shown these therapies to be empirically-supported, or scientifically proven to be effective. Indeed, when it comes to chronic pain management, these therapies are some of the few empirically-supported therapies that the field of pain management has.

Conclusion

Healthcare providers commonly refer patients with pain to pain psychologists because they know that what pain psychologists do is effective and important in the overall management of pain. However, it’s equally as common for people with pain to be confused by the referral, as they often do not know what it is that pain psychologists do and why it is helpful. To resolve this lack of understanding, it’s necessary to know how pain is produced in the body. Pain requires more than an injury or illness to be produced. For pain to occur, it also requires a nervous system. Both an injury/illness and the nervous system contribute to the production of pain. While some healthcare providers target their interventions at treating the initial injury or illness to reduce pain, pain psychologists target their interventions at the nervous system to reduce pain. The assessments and therapies that pain psychologists perform aim to show patients how to change the ways their nervous systems contribute to the production of pain. These therapies are empirically-supported in that they have been shown to be effective. They can reduce pain, reduce the negative impact that pain has, and can help people with pain become independent of the healthcare system in the management of their pain (e.g., help people to successfully self-manage pain without opioids). Thus, seeing a pain psychologist can be an important and helpful recommendation in the overall management of pain.

Date of initital publication: 2-14-2021

Date of last modification: 2-14-2021

You’d think that we’d all agree on what back pain is. Pain in the low back is almost as common as days of the week. Most everyone has had or will have back pain in the course of their lives and it is one of the most frequent reasons for seeking healthcare.1 Despite this common, everyday experience, we continue to be vexed by competing understandings of the nature of back pain.2

To be sure, our understanding of the cause of common back pain has changed over the last fifty some odd years. However, it’s questionable whether these changes mark true advances in knowledge.

A Brief History: Backache or Back Pain?

Backache

At one time, we tended to refer to back pain as backache. The term implied similarity to neck ache and headache. Today, when aches of the head and neck occur without any overt injury or illness, we tend to associate them with over-exertion, working too much, tension, and unresolved conflict, among others. We allow, in other words, for the occasions when problems or people are literally “such a headache” or “a pain in the neck.” Still other times, especially when people are prone to neck ache or headache, we tend to perceive such aches and pains as a barometer for when we need to take better care of ourselves because life has become too busy or problematic in some manner.

In the past, backache was considered similarly. The gradual appearance of low back pain, without injury or illness, was readily taken as a sign that life and/or relationships were getting out of sync: backache could be due to working too much, leading to the subsequent need for more rest and relaxation in life; or it was due to the persistent inactivity of a desk job and the habit of watching night-time TV, resulting in an unmet need for more exercise; or it could be due to the persistent unresolved conflict with, say, a boss at work and the mounting pressure that it entailed over time.

Suffering from backache (or neck ache or headache), people tended to prescribe a return to healthier ways of living – resolutions to get more rest and relaxation, work less, seek the solace of the country or outdoors, or bathe in warm springs or spa.

Today, we might understand this conceptualization of back pain with the concept of stress. We use the term stress to refer to the hectic and chaotic nature of modern life. We work too much. We are our chronically over-stimulated from information, messaging, and screens. We persistently juggle between work, children and their activities, and the management of elderly parents. Despite the apparent promise of connection through social media, urban and rural loneliness are all too common. When such imbalances persist for too long, we experience them in any number of emotional and bodily ways, some of which are headache, neck ache and backache.

We all recognize the grain of truth in this way of understanding the occurrence of low back pain, especially when it comes on gradually and without warning. We used to call this type of pain backache.

Injury/Spinal degeneration model of back pain

A competing conceptualization of backache, however, has coexisted alongside this understanding of backache as a malady of the stress ofPhoto by Justin Luebke courtesy of Unsplash modernity. It is backache as the result of a condition of the spine brought about by injury or degeneration. Allan and Waddell3 have a rich history of the first published medical papers beginning in the late 19th century hypothesizing backache as emanating from problems associated with the spine and subsequent reports of acute back pain due to railway injuries. By the first half of the 20th century, the intervertebral disc had sunsequently come to be understood as a source of backache. With the advent of CT scans in the 1970’s and MRI scans in the 1980’s, this conceptualization eclipsed all other ways of understanding backache, as so much of the spine had become visible. Having become observable, abnormalities of the spine were readily identified as the source of pain in the back. As a result, it is now commonplace to consider pain in the back as due to injury to the disc or degenerative changes to the spine. Indeed, this view of backache has so taken hold that we no longer readily use the term backache in preference for back pain.

There is, of course, a grain of truth in this way of understanding back pain too. Like any other part of the body, we can injure our low back. We are involved in motorcycle accidents, sports injuries, slips on the ice, and falls from ladders, and countless other ways we can injure ourselves. Sometimes, these accidents cause significant enough injuries that they can be seen on scans.

Indeed, beginning in the 1980’s, but really taking off in the 1990’s and early 2000’s, the use of CT and MRI scans became widespread for all instances of back pain. It seemed to open up a whole new world in our understanding of back pain. Specifically, we made the leap from initially holding that back pain is due to spinal abnormalities from injuries on some occasions to holding that back pain is due to spinal abnormalities on all (or most all) occasions.

The primacy of what we might call the injury model for understanding back pain is evident even in those instances in which there is no overt injury associated with the onset of back pain. In response to the gradual appearance of back pain, we tend to look to what we might think of as micro-injuries: “I must have slept wrong,” “I must have tweaked my back,” or “I twisted the wrong way.” Conceptualizing it as an injury, we subsequently seek medical evaluation and oftentimes want a scan to see what’s going on with the spine. Indeed, both the general population and healthcare professionals now seem to simply assume the association of common back pain with spinal abnormalities. Subsequently, it’s now commonplace to want to look first to the vertebrae, discs and ligaments when seeking an explanation of common back pain.

The term for what’s wrong in many of these instances has tended to be spinal- or disc degeneration. It’s a way to refer to the medical equivalent of what we might think of as micro-injuries. Degenerative changes to the spine are the result of slow, wear and tear.

Moreover, such degenerative changes can and have been, of course, the object of medical and surgical intervention. Physical therapists, physiatrists, interventional pain physicians, orthopedic and spine surgeons – all are experts in the evaluation and delivery of interventions aimed at degenerative conditions of the spine.

Having reached its apex in the early 2000’s, this way of conceptualizing back pain as the result of overt or subtle injury, defined by abnormality of the spinal structures, keeps back pain squarely within the realm of healthcare, rather than lifestyle. People have come to look, not to what they can do to alleviate backache, but to healthcare providers with an expertise in the evaluation and treatment of abnormalities of the vertebrae, disc and ligaments. In this way, people with back pain must become patients, it seems, because they have little control over the abnormalities of their vertebrae, discs, and ligaments once they have them. The implication is that people with back pain went from having a problem that they resolved themselves to patients with a medical condition, akin to an injury, that healthcare providers treat.

During this period of shifting emphasis towards spinal abnormalities as the explanation of back pain, the period of the 1990’s to the 2010’s saw the use of scans, interventional procedures, and surgeries grow at exponential rates.4

2010’s: Cracks in the Injury/Spinal Degeneration Model

Looking back, we might question the logic of what happened. Just because some instances of common back pain are due to injury doesn’t mean that all instances of common back pain are the result of injury. In logic, this type of error is called affirming the consequent and it’s considered a fallacy. It is, however, exactly what happened in our understanding of pain in the back.

We were captivated by a model for understanding a particular set of a phenomenon, through which we came to see all instances of the given phenomenon.5 We sometimes think that science and knowledge comes from empirical observation, which then lead us to developing models for understanding those observations. Of course, it can happen this way, but the reverse can also be true. Sometimes, our models determine what empirical observations we make. Science and knowledge can be a reciprocal process in this regard. It’s the latter that occurred from the 1990’s to at least the early 2010’s, but even to some extent to this day. Our injury model of back pain has determined how we perceive the empirical data of back pain.

Our captivation to this model was aided, of course, by the development of high-powered abilities to perceive spinal structures – the CT and MRI machines in the 1970’s and 1980’s, respectively. With them, we could find abnormalities of the spine even when the onset of back pain occurred without any overt precipitating injury – we could still find micro-injuries, if you will, in the form of degenerative changes of the spine. Thus, the injury model of back pain could still explain back pain even when there was no demonstrable outward injury. In other words, we could see the apparent spinal correlates to those instances when we explain to ourselves that we “must have” have injured our backs with a tweak or a wrong twist, even though we hadn't previously observed such a tweak or twist when the pain had come on subtly and progressively.

Despite the power of explanatory models determining what we see, empirical data can still break through in the form of counter-factuals to the model and lead to a change in the conceptual model itself. It takes, however, time, sometimes on the order of years, and it can be aided by changes in society.6

One early instance of counter-factual data, aided by events in society, was that despite the exponential growth of scans and treatments for spinal degeneration, disability claims for back pain grew at a corresponding exponential rate.7

How could this be? If common back pain is due to injury and we have the capabilities to both accurately assess these injuries with the use of scans and treat them with, say, the use of physical therapy and spinal interventions and surgeries, people with back pain should be get better and go back to work at high rates. It’s not what happened, though. With the practice of scanning and treating spinal abnormalities, people have been becoming more disabled. It is hard to escape the possibility that, in at least some instances of common back pain, we have been assessing and treating the wrong things – things that in fact were not the cause of these instances of back pain.

Another set of empirical data that arose in the 1990’s to challenge the injury model of back pain was the discovery that spinal abnormalities are common even among people without back pain. The use of scans, when turned on people without back pain, find the very same things that are found in people with back pain, and which are used to explain back pain.8, 9 As it turns out, disc herniations and degenerative changes are common in people, with or without back pain. Jarvik, et al.,10 and Borenstein, et al.,11 subsequently followed their subjects without back pain over a period of three and seven years, respectively, to see if the presence of such degenerative changes predict later onset of back pain. The progression of degenerative changes over time had no statistical correlation with who later developed back pain.

To place the importance of these findings in perspective, we might use an analogy of the brown-haired bank robber. Suppose that a bank was being robbed one morning and the police had received a tip that the bank robber had brown hair. They surrounded the bank and out came a young man with brown hair. They promptly arrested him and placed him in the back of a squad car, confident that they had found the robber. Upon entering the bank to tell the customers and staff that they were now safe, the police came to realize that many people in the bank had brown hair. Had they found the culprit? They’d have to admit that their confidence could no longer be so certain.

Similarly, having become able to find spinal abnormalities with the occurrence of back pain, we had become confident that back was due to these spinal abnormalities. However, once we came to recognize that we find such abnormalities commonly in people without back pain, we can't and shouldn't so certain that we have found the culprit of back pain.

At the time of the publication of these findings in the 1990’s and early 2000’s, these findings were indeed puzzling, and made a splash among healthcare providers. Nonetheless, they weren’t sufficient to alter the model through which we had come to understand and perceive back pain. We continued, as we still do today, to understand back pain as the result of injury or degeneration of the spine.

I recall occasions in the 2000’s when patients reported to me, “I never knew how much pain I was in until my surgeon read me my MRI results.” Still, to this day, I have patients who report to me that their interventional pain physician or surgeon, when reading their MRI results, exclaim in wonder as to how they can even walk with a spine like they have. Rather than privileging the facts, in this case that the patient doesn’t report much pain or can readily walk, and thus interpret the scans as not representative of their pain and abilities, they privileged the findings of the scans and then told the patients that they are actually worse than they are. Such is the power of the injury model to captivate and determine our understanding of the phenomenon in front of us.

If, however, we are able to step out of the injury model for understanding back pain, we might not wonder such things. We would understand better why people don’t have a lot of pain or difficulty walking, even when finding the presence of spinal abnormalities on scans. CT and MRI scans commonly reveal such findings in people with or without back pain.

Moreover, we might come to understand that these findings have little or no relationship to pain levels or functional abilities. We might, in other words, realize that we are pointing to the wrong things when attempting to explain many instances of common back pain.

This conclusion bears out in large-scale studies that fail to find either statistical or clinically meaningful relationships between back pain and spinal degenerative changes.12, 13 It’s hard to make a case that we have found the cause of back pain when the purported cause doesn’t even correlate, or correlates poorly, with back pain. The most charitable thing we can say is that the lion’s share of what accounts for back pain isn’t captured by scans. Back pain is likely due to many different things that when put together adds up to pain in a person’s back and that what’s found on a scan is just one small factor that accounts for any given person’s back pain.

Modern lifestyle or injury and degeneration?

While we can, of course, injure our back, as we can any other location of our body, should we then infer that all back pain is due to injury? When we so commonly find spinal abnormalities upon scanning the backs of people who report an injury, it is tempting to think that spinal abnormalities are the objective correlate to the reported injury. Similarly, it is tempting to think that such spinal abnormalities are the cause of back pain when it occurs gradually, without a precipitating injury, as we can find spinal abnormalities in these cases too. Thus, it can come to seem that all back pain is the result of spinal abnormalities, whether as the result of injury or more subtle degeneration of the spine.

This explanation of back pain can seem so compelling until, at least, we come to find similar levels of spinal abnormalities in people without back pain. We now have about three decades of repetitive studies coming to the same finding. Most of these studies find no statistically significant relationship between back pain and spinal abnormalities. Even in the minority of studies that do show statistical significance, the relationship is poor and of questionable clinical significance. At best, spinal abnormalities play only a minor role in the cause of back pain.

This fact might shed some light on why spine surgery, despite its widespread use, has failed to produce any conclusive empirical studies showing its effectiveness. The largest and longest study to date, the SPORT trial for lumbar disc herniation, has shown no considerable difference between those who have surgery for disc herniation and those who do not.14, 15, 16

This study was originally designed as a longitudinal, clinical trial, meaning that subjects, who all had disc herniations in their low back, were randomly assigned to either receive surgery or conservative care without surgery (the clinical trial aspect of the study) and then followed to obtain data on their status over the course of 1, 2, 4, and 8 years (the longitudinal aspect). When the data was compared for the two groups, strictly defined by those who remained in their randomized groupings over the course of the study (which is how a clinical trials are run, for instance, for testing the effectiveness of a medication), outcomes were no different between those who received surgery and those who did not receive surgery, at any of the follow-up periods from 1 to 8 years.

If this clinical trial tested the effectiveness of a medication, or of a psychological treatment, no one would question the conclusion that the treatment failed to work. It was no more effective than usual care, which is to say that adding surgery to the overall treatment provided no value. Surgery for disc herniation is no more effective than not having surgery.

However, a funny thing happens when we are captured by an explanatory model of a particular phenomenon and are then met with counterfactual data. Counterfactual data are hard to believe. It’s no truer when it comes to the specific situation of a widespread treatment for spinal abnormalities like surgery. We all collectively might want to ask: how can this be that surgery for disc herniation doesn’t work? Surely, it can’t be true.

As it turns out, the study had some problems, which ironically leads to a reframing of the data towards an alignment with the explanatory model that back pain is due to spinal abnormalities. Specifically, the study suffered from a lot of crossover of randomized subjects. Crossover occurs when subjects of a clinical trial fail to stay in their randomized groupings and so don’t end up getting the treatment to which they were randomized to get. So, in the instance of the SPORT trial, some subjects randomized to get surgery subsequently decided against getting surgery after all; and some of the subjects randomized to conservative care without surgery eventually decided to get surgery anyway. The investigators did the best they could given this circumstance and compiled the data in accordance to the re-assorted groupings and compared those who received surgery against those who did not receive surgery.

Because the subjects in these newly sorted groupings were not fully randomized anymore, this lack of randomization introduces additional variables that might influence the effectiveness of the procedure, outside of the actual procedure itself. There might be something unique to the individuals who decide for or against a certain treatment that in turn influences the effectiveness of the treatment, something that might have been more evenly distributed and therefore washed out, if they had stuck to the initial randomization of who got which treatment. We know, for instance, that motivation and belief in the effectiveness or lack of effectiveness of a treatment can influence the effectiveness of a treatment. It's feasible that such motivation and belief may have played a role in the degree of crossover from one randomized treatment to another, and, as such, they may have also played a role in the degree of effectiveness that those treatments exhibited in the study. 

Nonetheless, the data derived from the re-sorting of the groupings might shed some light on the effectiveness of the procedure, even if it is not as rigorous of a study as a clinical trial. The name for this type of study that the investigator’s secondarily pursued, given the circumstances, is called an observational study. The results of an observational study are not considered as conclusive as the results of a clinical trial.

What they found was that, at the 4-year and 8-year follow-up periods, both the group that received surgery and the group that did not receive the surgery improved, but that there was a statistically significant difference in favor of the surgery. In other words, those who had received the surgery improved a little bit more than those who id not receive surgery. This small improvement amounted to about a 13% greater reduction in pain for those who received surgery, which is roughly the equivalent of a one-point greater reduction on the commonly used 0 to 10 scale. There was no difference in the rate of returning to work between those who received surgery and those who didn’t.

The most charitable interpretation of these longitudinal findings of both the randomized clinical trial aspects of the study and the observational aspects of the study are that surgery for a herniated disc might show a small reduction in pain four years and eight years down the road, when compared to not getting surgery. Again, both the surgery group and the non-surgery group showed improvements, but the surgery group improved just a little more than those who did not receive surgery.

Nonetheless, this small improvement is of questionable clinical significance – is the difference, say, of having a pain level of a 7 rather than an 8, four to eight years down the road, enough of a difference to really make a difference in the actual experiences of one’s life?

Thus, the SPORT Trial, which is the best study to date of surgery for disc herniation is far from conclusive. It points to the conclusion that surgery for disc herniation might produce a small improvement in pain level over time.

This small effect for pain reduction but not work status improvement falls in line with what we have been discussing – spinal abnormalities might play a causal role in back pain, but if they do, it is a small role, and so targeting them surgically produces only small improvement. Again, all of this is to suggest that the lion’s share of what causes common back pain lies outside of what scans can identify and what therapies targeting such abnormalities can effectively treat.

Conclusion

Despite decades of data pointing to a cause of common back pain as more complex than simply the presence of spinal abnormalities, a large portion of society continue to have a default understanding that back pain is due to an injury for which spinal degenerative changes are its correlate.17, 18 This default understanding involves, of course, a subsequent default implication that first-line treatments of back pain should target these degenerative changes.

We continue this default understanding because we are captured by an explanatory model that back pain is due to injury, and spinal degenerative changes are the correlate to injury. We continue to do so at the peril of persistent pain, disability and cost.

What, then, of our alternative understanding of back pain – that of back pain as backache, similar to a headache?

With each time we develop a headache, we don’t automatically think that we must have injured our head, and subsequently seek medical evaluation and a scan to determine the specific nature of the injury that we figure we must have had. We also don’t automatically think that we must seek out therapies that target the presumed injury. Rather, we tend to naturally think of it as due to tension and stress, or working too much, or not getting enough sleep, or just the hectic pace of our modern lifestyle. We subsequently think that we need to take better care of ourselves and engage in some healthy changes to the life we live.

Maybe, it’s time to return to a similar understanding of back pain. We could start by going back to referring to back pain as backache.

More Information

For more information, see also:

References

1. St. Sauver, J. L, Warner, D. O., Yawn, B. P., Jacobson, D. J., McGree, M. E., Pankratz, J. J., Melton, L. J., Roger, V. L., Ebbert, J. O., & Rocca, W. A. (2013). Why do patients visit their doctors? Assessing the most prevalent conditions in a defined US population. Mayo Clinic Proceedings, 88(1), 56-67. doi: 10.1016/j.mayocp.2012.08.020

2. Hartvigsen, J., Hancock, M. J., Kongsted, A., Louw, Q., Ferreira, M. L… Lancet Low Back Pain Series Working Group. (2018). What low back pain is and why we need to pay attention. Lancet, 391(10137), 2356-2367. doi: 10.1016/S0140-6736(18)30480-X

3. Allan, D. B., & Waddell, G. (1989). An historical perspective on low back pain and disability. Acta Orthopaedica Scandinavica, 60(suppl. 234), 1-23. doi: 10.3109/7453678909153916

4. Brooks, M. I., Deyo, R. A., Mirza, S. K., Turner, J. A., Comstock, B. A., Hollingworth, W., & Sullivan S. D. (2008). Expenditures and health status among adults with back and neck problems. Journal of the American Medical Association, 299, 656-664.

5. Wittgenstein, L. (1953). Philosophical Investigations. New York: Macmillan.

6. Kuhn, T. S. (1996). The Structure of Scientific Revolutions (3rd Edition). Chicago: University of Chicago Press.

7. Deyo, R. A., Mirza, S. K., Turner, J. A., & Martin, B. I. (2009). Overtreating back pain: Time to back off? Journal of the American Board of Family Medicine, 22(1), 62-68. doi: 10.3122/jabfm.2009.01.080102

8. Boden, S. D., Davis, D. O., Dina, T. S., Patronas, N. J., & Wiesel, S. W. (1990). Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects: A prospective investigation. Journal of Bone and Joint Surgery: American Volume, 72(3), 403-408.

9. Jensen, M. C., Brant-Zawadzki, M. C., Obuchowski, N., Modic, M. T., Malkasian, D., & Ross, J. S. (1994). Magnetic resonance imaging of the lumbar spine in people without back pain. New England Journal of Medicine, 331, 69-72. doi:10.1056/NEJm199407143310201

10. Jarvik, J. G., Hollingworth, W., Heagerty, P. J., Haynor, D. R., Boyko, E. J., & Deyo, R. A. (2005) Three-year incidence of low back pain in an initially asymptomatic cohort. Spine, 30, 1541-1548.

11. Borenstein, D. G., O’Mara, J. W., Boden, S. D., Lauerman, W. C., Jacobson, A., Platenberg, C., Schellinger, D., & Wiesel, S. W. (2001). The value of magnetic-resonance imaging of the lumbar spine to predict low-back pain in asymptomatic subjects: A seven-year follow-up study. Journal of Bone and Joint Surgery: American Volume, 83(9), 1306-1311. doi: 10/2106/00004623-200109000-00002

12. Brinjikji, W., Luetmer, P. H., Comstock, B., Bresnehan, B. W., Chen, L. E., Deyo, R. A., Halabi, S., Turner, J. A., Alvins, A. L., James. K., Wald, J. T., Kallmes, D. F., & Jarvik, J. G. (2016). Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. American Journal of Neuroradiology, 36(4), 811-816.

13. Corniola, M. V., Stienen, M. N., Joswig, H., Smoll, N. R., Schaller, K., Hildebrandt, G., & Gautschi, O. P. (2016). Correlation of pain, functional impairment, and health-related quality of life with radiological grading scales of lumber degenerative disc disease. Acta Neurochirurgica, 158(3), 499-505.

14. Weinstein, J. N., Tosteson, T. D., Lurie, J. D., Tosteson, A. N., Hanscom, B., Sinner, J. S., Abdu, W. A., Hilibrand, A. S., Boden, S. D., & Deyo, R. A. (2006). Surgical vs. nonoperative treatment for lumbar disk herniation: The Spine Patient Outcomes Research Trial (SPORT): A randomized trial. JAMA, 296(20), 2441-2450. doi: 10.1001/jama.296.20.2441

15. Weinstein, J. N., Lurie, J. D., Tosteson, T. D., Tosteson, A. N., Blood, E., Abdu, W. A., Herkowitz, H., Hilibrand, A. S., Albert, T., & Fischgrung, J. (2008). Surgical versus non-operative treatment for lumbar disk herniation: Four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine, 33(25), 2789-2800. doi: 10.1097/BRS.0b013e318ed8f4

16. Lurie, J. D., Tosteson, T. D., Tosteson, A. N., Zhao, W., Morgan, T. S., Abdu, W. A., Herkowitz, H. & Weinstein, J. N. (2014). Surgical versus nonoperative treatment for lumbar disk herniation: Eight-year results for the spine patient outcomes research trial. Spine, 39(1), 3-16. doi: 10.1097/BRS.0000000000000088

17. Weber, C., Behbahani, M., Baardsen, R., Lehmberg, J., Meyer, B., & Shiban, E. (2107). Patients’ beliefs about diagnosis and treatment of cervical spondylosis with radiculopathy. Acta Neurochirurgica, 159(12), 2379-2384. doi: 10.1007/s00701-017-3356-0

18. Franz, E. W., Bentley, J. N., Yee, P. S., Chang, K. W., Kendall-Thomas, J., Park, P., & Yang, L. J. Patient misconceptions concerning lumbar spondylosis diagnosis and treatment. Journal of Neurosurgery, Spine, 22(5), 496-502. doi: 10.3171/2014.10.SPINE14537

Date of initital publication: 12-6-2021

Date of last modification: 1-3-2021

Twenty some odd years ago, the American Academy of Pain Medicine and the American Pain Society, two large pain-related professional organizations, teamed up to agree upon what it means to have both chronic pain and be addicted to opioid pain medications at the same time.1 They did it because addiction to opioid medications when patients are prescribed them for legitimate health reasons seems different than addiction to other substances like alcohol, cannabis, cocaine, or even illegally obtained opioid medications when not used for pain. The difference involves the phenomena of tolerance, physical dependence, and withdrawal, which in part serve as criteria for the diagnosis of addiction when it comes to all other substances.

The most vexing of all questions in the debate over long-term opioid management for pain is subtle, difficult to articulate, and rarely considered. It lies at the heart of whether and how we maintain patients with severe pain on long-term opioids or whether we help them learn to self-manage it instead.

This most vexing of questions involves how we understand the nature of pain severity and its relationship to its degree of tolerability in the long-term opioid management patient. For depending on how we understand the intolerability of severe pain, it leads to contradictory treatment considerations among well-meaning, competent patients and providers, and even within the larger society.

What is biofeedback?

Biofeedback is a treatment used for a variety of chronic pain and other medical conditions that consists of sensors placed on the patient’s body while physiological data is viewed on a computer screen or other monitor in real time. It is considered a self-regulatory therapy because it is a tool for increasing awareness of and changing individual physiological responses to reduce symptoms or improve performance. The Association for Applied Psychophysiology and Biofeedback (AAPB), the Biofeedback Certification International Alliance (BCIA), and International Society for Neurofeedback and Research (ISNR) provide this standard definition:

 "A community is a group of people banded together by gifts and stories."

Charles Eisenstein

It is embedded in our human history: stories. Even before modern day, numerous cultures have shared history lessons in the form of stories. By sharing wisdom and experiences, stories can build communities. In essence, individuals no longer feel alone; they feel a sense of belonging and connection. Those stories can generate emotion and help people cope with life's complexities.

On initial reaction, it might seem absurd to talk about the benefits of self-managing chronic pain without opioid medications. "What," one might ask, "would you use to reduce pain? You wouldn't want to live the rest of your life in pain, would you?" The topic seems absurd because pain reduction reflexively seems so important. Indeed, pain reduction from the use of opioids seems so important that it trumps everything else, even problems associated with the use of opioids.

Patients with chronic pain, their healthcare providers, and society, more generally, are all typically concerned about addiction to opioid pain medications. This concern is well founded. Once commonly thought of as rare,1, 2 it is now generally accepted that the true rate of addiction to such medications is much higher than what was once thought.3, 4 The issue of addiction to prescription opioid pain medications generates considerable debate among the stakeholders in the field of chronic pain management. There are strong voices for the continued use of such medications despite the rate of addiction and strong voices against the continued use of these medications because of the rate of addiction.

This website is certified by Health On the Net Foundation. Click to verify. This site complies with the HONcode standard for trustworthy health information:
verify here.

Search only trustworthy HONcode health websites:

 

© 2017 Institute for Chronic Pain. All rights reserved.

To improve your experience on our website, we use cookies to examine site traffic and enable additional capabilities such as social media interaction and marketing.


Warning: mysqli::stat(): Couldn't fetch mysqli in /home/inst1tut3/public_html/libraries/joomla/database/driver/mysqli.php on line 213

Warning: mysqli::stat(): Couldn't fetch mysqli in /home/inst1tut3/public_html/libraries/joomla/database/driver/mysqli.php on line 213

Warning: mysqli::stat(): Couldn't fetch mysqli in /home/inst1tut3/public_html/libraries/joomla/database/driver/mysqli.php on line 213

Warning: mysqli::stat(): Couldn't fetch mysqli in /home/inst1tut3/public_html/libraries/joomla/database/driver/mysqli.php on line 213

Warning: mysqli::stat(): Couldn't fetch mysqli in /home/inst1tut3/public_html/libraries/joomla/database/driver/mysqli.php on line 213

Warning: mysqli::stat(): Couldn't fetch mysqli in /home/inst1tut3/public_html/libraries/joomla/database/driver/mysqli.php on line 213

Warning: mysqli::stat(): Couldn't fetch mysqli in /home/inst1tut3/public_html/libraries/joomla/database/driver/mysqli.php on line 213

Warning: mysqli::stat(): Couldn't fetch mysqli in /home/inst1tut3/public_html/libraries/joomla/database/driver/mysqli.php on line 213